Eyeless uncouples mushroom body neuroblast proliferation from dietary amino acids in Drosophila

نویسندگان

  • Conor W Sipe
  • Sarah E Siegrist
چکیده

Cell proliferation is coupled with nutrient availability. If nutrients become limited, proliferation ceases, because growth factor and/or PI3-kinase activity levels become attenuated. Here, we report an exception to this generality within a subpopulation of Drosophila neural stem cells (neuroblasts). We find that most neuroblasts enter and exit cell cycle in a nutrient-dependent manner that is reversible and regulated by PI3-kinase. However, a small subset, the mushroom body neuroblasts, which generate neurons important for memory and learning, divide independent of dietary nutrient conditions and PI3-kinase activity. This nutrient-independent proliferation is regulated by Eyeless, a Pax-6 orthologue, expressed in mushroom body neuroblasts. When Eyeless is knocked down, mushroom body neuroblasts exit cell cycle when nutrients are withdrawn. Conversely, when Eyeless is ectopically expressed, some non-mushroom body neuroblasts divide independent of dietary nutrient conditions. Therefore, Eyeless uncouples MB neuroblast proliferation from nutrient availability, allowing preferential neurogenesis in brain subregions during nutrient poor conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

enok encodes a Drosophila putative histone acetyltransferase required for mushroom body neuroblast proliferation

Mushroom bodies in the Drosophila brain are centers for olfactory learning and memory. We have previously shown that the mushroom bodies comprise three types of neurons with distinct axonal projections. These three types of neurons are generated sequentially from common neuroblasts. We report here the identification of a gene that we have named enoki mushroom (enok), which when it is mutated gi...

متن کامل

Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain

The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly 'forebrain', develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox (rx), encoding for an evolutionarily conserved transcription factor, is required for proper devel...

متن کامل

Early development of the Drosophila mushroom body: the roles of eyeless and dachshund.

The mushroom body (MB) is a uniquely identifiable brain structure present in most arthropods. Functional studies have established its role in learning and memory. Here we describe the early embryonic origin of the four neuroblasts that give rise to the mushroom body and follow its morphogenesis through later embryonic stages. In the late embryo, axons of MB neurons lay down a characteristic pat...

متن کامل

A protein related to p21-activated kinase (PAK) that is involved in neurogenesis in the Drosophila adult central nervous system

Brains are organized by the developmental processes generating them. The embryonic neurogenic phase of Drosophila melanogaster has been studied in detail at the genetic, cellular and molecular level. In contrast, much of what is known of postembryonic brain development has been gathered by neuroanatomical and gene expression studies. The molecular mechanisms underlying cellular diversity and st...

متن کامل

Extremes of Lineage Plasticity in the Drosophila Brain

An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development. We find that in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017